A Jurassic stem pleurodire sheds light on the functional origin of neck retraction in turtles
نویسندگان
چکیده
Modern turtles are composed of two monophyletic groups, notably diagnosed by divergent neck retraction mechanisms. Pleurodires (side-necked turtles) bend their neck sideways and protect their head under the anterior margin of the carapace. Cryptodires (hidden-necked turtles) withdraw their neck and head in the vertical plane between the shoulder girdles. These two mechanisms of neck retraction appeared independently in the two lineages and are usually assumed to have evolved for protective reasons. Here we describe the neck of Platychelys oberndorferi, a Late Jurassic early stem pleurodire, and find remarkable convergent morphological and functional similarities with modern cryptodires. Partial vertical neck retraction in this taxon is interpreted to have enabled fast forward projection of the head during underwater prey capture and offers a likely explanation to the functional origin of neck retraction in modern cryptodires. Complete head withdrawal for protection may therefore have resulted from an exaptation in that group.
منابع مشابه
A new stem turtle from the Middle Jurassic of Scotland: new insights into the evolution and palaeoecology of basal turtles.
The discovery of a new stem turtle from the Middle Jurassic (Bathonian) deposits of the Isle of Skye, Scotland, sheds new light on the early evolutionary history of Testudinata. Eileanchelys waldmani gen. et sp. nov. is known from cranial and postcranial material of several individuals and represents the most complete Middle Jurassic turtle described to date, bridging the morphological gap betw...
متن کاملA new, nearly complete stem turtle from the Jurassic of South America with implications for turtle evolution.
Turtles have been known since the Upper Triassic (210Myr old); however, fossils recording the first steps of turtle evolution are scarce and often fragmentary. As a consequence, one of the main questions is whether living turtles (Testudines) originated during the Late Triassic (210Myr old) or during the Middle to Late Jurassic (ca 160Myr old). The discovery of the new fossil turtle, Condorchel...
متن کاملModeling neck mobility in fossil turtles.
Turtles have the unparalleled ability to retract their heads and necks within their shell but little is known about the evolution of this trait. Extensive analysis of neck mobility in turtles using radiographs, CT scans, and morphometry reveals that basal turtles possessed less mobility in the neck relative to their extant relatives, although the anatomical prerequisites for modern mobility wer...
متن کاملEmbryonic remnants of intercentra and cervical ribs in turtles
A broad sample of extant turtles possesses a series of paired bones in the neck that are situated between the cervical vertebrae. These paired bones were originally proposed to be cervical rib remnants, but have more recently been interpreted as vestiges of intercentra. Here, we document, for the first time, the neck development of a pleurodire turtle, Emydura subglobosa, and identify blastemat...
متن کاملEvolution of neck vertebral shape and neck retraction at the transition to modern turtles: an integrated geometric morphometric approach.
The unique ability of modern turtles to retract their head and neck into the shell through a side-necked (pleurodiran) or hidden-necked (cryptodiran) motion is thought to have evolved independently in crown turtles. The anatomical changes that led to the vertebral shapes of modern turtles, however, are still poorly understood. Here we present comprehensive geometric morphometric analyses that t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017